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1. Executive Summary
This comprehensive guide provides patterns and best practices for implementing Machine Learning Operations (MLOps) on Databricks using MLflow. It covers the complete ML lifecycle from experimentation to production deployment, including model tracking, registry, deployment patterns, and monitoring. The guide enables data science teams to build reproducible, scalable, and production-ready machine learning systems.
Key Benefits of MLOps on Databricks
Machine Learning Operations (MLOps) addresses the challenges of operationalizing ML models at scale. Without proper MLOps practices, organizations face issues such as unreproducible experiments, difficult model debugging, slow deployment cycles, and lack of model governance. Databricks provides an integrated platform that unifies data engineering and data science workflows, making it easier to implement MLOps best practices.
Benefits of MLflow on Databricks:
Experiment Tracking: Automatically log parameters, metrics, and artifacts for every experiment run
Model Registry: Centralized model storage with versioning, aliasing, and governance
Reproducibility: Capture complete experiment context including code, data, and environment
Collaboration: Share experiments and models across teams with fine-grained access control
Deployment Flexibility: Deploy models as REST APIs, batch jobs, or streaming pipelines
2. MLOps Architecture Overview
2.1 End-to-End ML Platform Architecture
The following architecture diagram illustrates how different components of the Databricks ML platform work together to support the complete machine learning lifecycle:
┌─────────────────────────────────────────────────────────────────────────────┐
│                    DATABRICKS ML PLATFORM ARCHITECTURE                       │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │                     DATA LAYER (UNITY CATALOG)                       │    │
│  │  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐  ┌────────────┐ │    │
│  │  │  Feature    │  │  Training   │  │  Inference  │  │   Model    │ │    │
│  │  │  Tables     │  │  Datasets   │  │  Datasets   │  │  Artifacts │ │    │
│  │  └─────────────┘  └─────────────┘  └─────────────┘  └────────────┘ │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                      │                                       │
│                                      ▼                                       │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │                     EXPERIMENTATION LAYER                            │    │
│  │  ┌───────────────────────────────────────────────────────────────┐  │    │
│  │  │                    MLFLOW TRACKING                             │  │    │
│  │  │  ┌─────────────┐  ┌─────────────┐  ┌─────────────────────────┐│  │    │
│  │  │  │ Experiments │  │    Runs     │  │  Metrics/Params/Artifacts││  │    │
│  │  │  └─────────────┘  └─────────────┘  └─────────────────────────┘│  │    │
│  │  └───────────────────────────────────────────────────────────────┘  │    │
│  │  ┌───────────────────────────────────────────────────────────────┐  │    │
│  │  │                 DATABRICKS NOTEBOOKS                           │  │    │
│  │  │  • Interactive Development  • AutoML  • Feature Engineering   │  │    │
│  │  └───────────────────────────────────────────────────────────────┘  │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                      │                                       │
│                                      ▼                                       │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │                     MODEL MANAGEMENT LAYER                           │    │
│  │  ┌───────────────────────────────────────────────────────────────┐  │    │
│  │  │               UNITY CATALOG MODEL REGISTRY                     │  │    │
│  │  │  ┌─────────────┐  ┌─────────────┐  ┌─────────────────────────┐│  │    │
│  │  │  │   Models    │  │  Versions   │  │   Aliases (Champion/    ││  │    │
│  │  │  │             │  │             │  │   Challenger/Archived)  ││  │    │
│  │  │  └─────────────┘  └─────────────┘  └─────────────────────────┘│  │    │
│  │  │  ┌─────────────────────────────────────────────────────────┐  │  │    │
│  │  │  │  Lineage  │  Governance  │  Access Control  │  Audit    │  │  │    │
│  │  │  └─────────────────────────────────────────────────────────┘  │  │    │
│  │  └───────────────────────────────────────────────────────────────┘  │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                      │                                       │
│                                      ▼                                       │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │                     DEPLOYMENT LAYER                                 │    │
│  │  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐  ┌────────────┐ │    │
│  │  │  Model      │  │   Batch     │  │  Streaming  │  │  Feature   │ │    │
│  │  │  Serving    │  │  Inference  │  │  Inference  │  │  Serving   │ │    │
│  │  │  (REST API) │  │  (Jobs)     │  │  (DLT)      │  │            │ │    │
│  │  └─────────────┘  └─────────────┘  └─────────────┘  └────────────┘ │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                      │                                       │
│                                      ▼                                       │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │                     MONITORING LAYER                                 │    │
│  │  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐  ┌────────────┐ │    │
│  │  │  Inference  │  │   Model     │  │   Data      │  │   Alert    │ │    │
│  │  │  Tables     │  │  Monitoring │  │   Drift     │  │   System   │ │    │
│  │  └─────────────┘  └─────────────┘  └─────────────┘  └────────────┘ │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘
2.2 MLOps Maturity Levels
Organizations typically progress through several maturity levels when implementing MLOps. Understanding these levels helps teams identify their current state and plan their journey toward full MLOps automation:
	Level
	Description
	Capabilities
	Typical Challenges

	**Level 0**
	Manual Process
	Ad-hoc experiments, manual deployments, notebook-based workflows
	Unreproducible results, slow iteration

	**Level 1**
	ML Pipeline Automation
	Automated training, versioned models, scheduled retraining
	Manual testing, limited monitoring

	**Level 2**
	CI/CD for ML
	Automated testing, staged deployments, model validation
	Complex infrastructure, skill gaps

	**Level 3**
	Full MLOps
	Continuous training, monitoring, auto-remediation
	Organizational alignment, cost management



3. MLflow Tracking
3.1 Understanding MLflow Experiments and Runs
MLflow Tracking is the foundation of experiment management in Databricks. It organizes ML work into experiments (logical groupings of related ML work) and runs (individual executions within an experiment). Each run captures:
Parameters: Input configurations like hyperparameters, data paths, feature selections
Metrics: Output measurements like accuracy, loss, AUC, custom business metrics
Artifacts: Output files like models, plots, data samples, configuration files
Tags: Metadata for organization like team name, project stage, data version
3.2 Experiment Setup and Configuration
Before running any ML experiments, you should set up the experiment context. This ensures all runs are properly organized and tracked:
import mlflow
from mlflow.tracking import MlflowClient

# Set experiment - creates if doesn't exist
# Use descriptive paths that indicate project and purpose
mlflow.set_experiment("/Users/data_science/customer_churn_prediction")

# Get experiment details programmatically
client = MlflowClient()
experiment = client.get_experiment_by_name("/Users/data_science/customer_churn_prediction")
print(f"Experiment ID: {experiment.experiment_id}")
print(f"Artifact Location: {experiment.artifact_location}")
3.3 Autologging Configuration
Autologging automatically captures parameters, metrics, and models for supported ML frameworks. This reduces boilerplate code and ensures consistent tracking across experiments:
import mlflow

# Scikit-learn autologging - captures all estimator parameters and metrics
mlflow.sklearn.autolog(
    log_input_examples=True,      # Log sample input data for model signature
    log_model_signatures=True,    # Infer and log input/output schema
    log_models=True,              # Save trained models as artifacts
    log_post_training_metrics=True,  # Log metrics computed after training
    silent=False,                 # Show autologging info messages
    max_tuning_runs=10           # Max hyperparameter tuning runs to log
)

# Spark ML autologging - for distributed ML pipelines
mlflow.spark.autolog(
    log_models=True,
    log_input_examples=True,
    log_model_signatures=True,
    log_post_training_metrics=True,
    silent=False
)

# XGBoost autologging - popular gradient boosting library
mlflow.xgboost.autolog(
    log_input_examples=True,
    log_model_signatures=True,
    log_models=True
)

# PyTorch/Lightning autologging - deep learning workflows
mlflow.pytorch.autolog(
    log_every_n_epoch=1,          # Log metrics every epoch
    log_every_n_step=None,        # Or log every N steps
    log_models=True,              # Save model checkpoints
    log_datasets=True,            # Log dataset info
    checkpoint=True,              # Enable checkpointing
    checkpoint_monitor="val_loss", # Metric to monitor for best model
    checkpoint_save_best_only=True # Only save best checkpoint
)
3.4 Manual Experiment Tracking
For custom metrics, advanced logging, or unsupported frameworks, use manual tracking. This provides full control over what gets logged:
import mlflow
import mlflow.sklearn
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import (
    accuracy_score, precision_score, recall_score,
    f1_score, roc_auc_score, confusion_matrix,
    classification_report
)
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
import json

def train_and_log_model(
    X: pd.DataFrame,
    y: pd.Series,
    model_params: dict,
    experiment_name: str,
    run_name: str = None
) -> str:
    """
    Train a model and log all relevant information to MLflow.

    This function demonstrates comprehensive MLflow tracking including:
    - Parameters: All hyperparameters and configuration
    - Metrics: Training and validation metrics
    - Artifacts: Model, plots, and reports
    - Tags: Metadata for organization

    Args:
        X: Feature DataFrame
        y: Target Series
        model_params: Dictionary of model hyperparameters
        experiment_name: MLflow experiment path
        run_name: Optional name for this specific run

    Returns:
        run_id: The MLflow run ID for reference
    """

    mlflow.set_experiment(experiment_name)

    with mlflow.start_run(run_name=run_name) as run:
        # Set tags for organization and searchability
        mlflow.set_tags({
            "model_type": "RandomForestClassifier",
            "team": "data_science",
            "project": "customer_churn",
            "environment": "development",
            "data_version": "v2.1"
        })

        # Log all model parameters
        mlflow.log_params(model_params)

        # Log data characteristics
        mlflow.log_params({
            "n_samples": len(X),
            "n_features": X.shape[1],
            "class_balance": dict(y.value_counts(normalize=True))
        })

        # Split data for training and validation
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=0.2, random_state=42, stratify=y
        )

        # Train model
        model = RandomForestClassifier(**model_params, random_state=42)
        model.fit(X_train, y_train)

        # Generate predictions
        y_pred = model.predict(X_test)
        y_prob = model.predict_proba(X_test)[:, 1]

        # Calculate and log metrics
        metrics = {
            "accuracy": accuracy_score(y_test, y_pred),
            "precision": precision_score(y_test, y_pred, average='weighted'),
            "recall": recall_score(y_test, y_pred, average='weighted'),
            "f1_score": f1_score(y_test, y_pred, average='weighted'),
            "roc_auc": roc_auc_score(y_test, y_prob)
        }
        mlflow.log_metrics(metrics)

        # Log cross-validation scores for robustness
        cv_scores = cross_val_score(model, X, y, cv=5, scoring='f1_weighted')
        mlflow.log_metrics({
            "cv_f1_mean": cv_scores.mean(),
            "cv_f1_std": cv_scores.std()
        })

        # Create and log confusion matrix plot
        plt.figure(figsize=(8, 6))
        cm = confusion_matrix(y_test, y_pred)
        sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
        plt.title('Confusion Matrix')
        plt.ylabel('Actual')
        plt.xlabel('Predicted')
        plt.tight_layout()
        mlflow.log_figure(plt.gcf(), "confusion_matrix.png")
        plt.close()

        # Create and log feature importance plot
        feature_importance = pd.DataFrame({
            'feature': X.columns,
            'importance': model.feature_importances_
        }).sort_values('importance', ascending=False)

        plt.figure(figsize=(10, 8))
        sns.barplot(data=feature_importance.head(20), x='importance', y='feature')
        plt.title('Top 20 Feature Importances')
        plt.tight_layout()
        mlflow.log_figure(plt.gcf(), "feature_importance.png")
        plt.close()

        # Log feature importance as JSON artifact
        mlflow.log_dict(
            feature_importance.to_dict(orient='records'),
            "feature_importance.json"
        )

        # Log classification report
        report = classification_report(y_test, y_pred, output_dict=True)
        mlflow.log_dict(report, "classification_report.json")

        # Log the model with signature and input example
        from mlflow.models.signature import infer_signature
        signature = infer_signature(X_train, y_pred)

        mlflow.sklearn.log_model(
            model,
            "model",
            signature=signature,
            input_example=X_train.head(5),
            registered_model_name=None  # Don't auto-register
        )

        print(f"Run ID: {run.info.run_id}")
        print(f"Metrics: {metrics}")

        return run.info.run_id
4. Unity Catalog Model Registry
4.1 Understanding Model Registry
The Unity Catalog Model Registry provides a centralized hub for managing ML models across the organization. Unlike the legacy Workspace Model Registry, Unity Catalog models are:
Governed: Integrated with Unity Catalog access controls and permissions
Discoverable: Searchable across workspaces with rich metadata
Versioned: Full version history with immutable model artifacts
Aliased: Use aliases like "champion" and "challenger" instead of stages
4.2 Registering Models
After training a model, register it in Unity Catalog for versioning and deployment:
import mlflow
from mlflow.tracking import MlflowClient

# Set the registry URI to Unity Catalog
mlflow.set_registry_uri("databricks-uc")

# Option 1: Register during training
with mlflow.start_run() as run:
    # ... train model ...
    mlflow.sklearn.log_model(
        model,
        "model",
        registered_model_name="ml_catalog.models.customer_churn_predictor"
    )

# Option 2: Register existing run's model
client = MlflowClient()
result = client.create_registered_model(
    name="ml_catalog.models.customer_churn_predictor",
    description="Predicts customer churn probability based on usage patterns",
    tags={"team": "data_science", "use_case": "retention"}
)

# Register a specific run's model as a new version
model_version = client.create_model_version(
    name="ml_catalog.models.customer_churn_predictor",
    source=f"runs:/{run_id}/model",
    run_id=run_id,
    description="Random Forest model with improved feature engineering"
)

print(f"Registered model version: {model_version.version}")
4.3 Model Aliases and Lifecycle
Unity Catalog uses aliases instead of stages for model lifecycle management. Common aliases include:
from mlflow.tracking import MlflowClient

client = MlflowClient()
model_name = "ml_catalog.models.customer_churn_predictor"

# Set alias for the current production model
client.set_registered_model_alias(
    name=model_name,
    alias="champion",
    version=5
)

# Set alias for a model being evaluated
client.set_registered_model_alias(
    name=model_name,
    alias="challenger",
    version=6
)

# Load model by alias for inference
champion_model = mlflow.pyfunc.load_model(f"models:/{model_name}@champion")
challenger_model = mlflow.pyfunc.load_model(f"models:/{model_name}@challenger")

# Remove alias when no longer needed
client.delete_registered_model_alias(
    name=model_name,
    alias="challenger"
)

# List all aliases for a model
model = client.get_registered_model(model_name)
for alias in model.aliases:
    print(f"Alias: {alias.alias} -> Version: {alias.version}")
4.4 Model Governance with Unity Catalog
Unity Catalog provides fine-grained access control for ML models:
-- Grant permissions on model catalog
GRANT USE CATALOG ON CATALOG ml_catalog TO `data-scientists`;

-- Grant permissions on model schema
GRANT USE SCHEMA ON SCHEMA ml_catalog.models TO `data-scientists`;
GRANT CREATE MODEL ON SCHEMA ml_catalog.models TO `data-scientists`;

-- Grant permissions on specific model
GRANT EXECUTE ON MODEL ml_catalog.models.customer_churn_predictor TO `ml-engineers`;

-- View model lineage (in Catalog Explorer or via API)
-- Shows data sources, feature tables, and downstream consumers
5. Model Deployment Patterns
5.1 Real-Time Serving with Model Serving
Databricks Model Serving provides serverless, real-time inference endpoints:
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.serving import (
    EndpointCoreConfigInput,
    ServedModelInput,
    ServedModelInputWorkloadSize,
    TrafficConfig,
    Route
)

w = WorkspaceClient()

# Create serving endpoint
endpoint = w.serving_endpoints.create_and_wait(
    name="customer-churn-endpoint",
    config=EndpointCoreConfigInput(
        served_models=[
            ServedModelInput(
                model_name="ml_catalog.models.customer_churn_predictor",
                model_version="5",
                workload_size=ServedModelInputWorkloadSize.SMALL,
                scale_to_zero_enabled=True
            )
        ],
        traffic_config=TrafficConfig(
            routes=[
                Route(
                    served_model_name="customer_churn_predictor-5",
                    traffic_percentage=100
                )
            ]
        )
    )
)

print(f"Endpoint URL: {endpoint.state.config_update}")
5.2 A/B Testing with Traffic Splitting
Deploy champion and challenger models with traffic splitting for safe rollouts:
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.serving import (
    EndpointCoreConfigInput,
    ServedModelInput,
    TrafficConfig,
    Route
)

w = WorkspaceClient()

# Update endpoint for A/B testing
w.serving_endpoints.update_config_and_wait(
    name="customer-churn-endpoint",
    served_models=[
        ServedModelInput(
            model_name="ml_catalog.models.customer_churn_predictor",
            model_version="5",  # Champion
            workload_size="Small",
            scale_to_zero_enabled=True
        ),
        ServedModelInput(
            model_name="ml_catalog.models.customer_churn_predictor",
            model_version="6",  # Challenger
            workload_size="Small",
            scale_to_zero_enabled=True
        )
    ],
    traffic_config=TrafficConfig(
        routes=[
            Route(
                served_model_name="customer_churn_predictor-5",
                traffic_percentage=90  # 90% to champion
            ),
            Route(
                served_model_name="customer_churn_predictor-6",
                traffic_percentage=10  # 10% to challenger
            )
        ]
    )
)
5.3 Batch Inference
For high-volume, non-real-time predictions, use batch inference with Spark:
import mlflow
from pyspark.sql import functions as F

# Load model as Spark UDF for distributed inference
model_uri = "models:/ml_catalog.models.customer_churn_predictor@champion"
predict_udf = mlflow.pyfunc.spark_udf(spark, model_uri, result_type="double")

# Load customer features
customers_df = spark.table("gold.customer_features")

# Apply model at scale
predictions_df = customers_df.withColumn(
    "churn_probability",
    predict_udf(F.struct(*[F.col(c) for c in feature_columns]))
)

# Add prediction metadata
predictions_df = predictions_df.withColumns({
    "prediction_timestamp": F.current_timestamp(),
    "model_version": F.lit("5"),
    "model_name": F.lit("customer_churn_predictor")
})

# Write predictions to Delta table
predictions_df.write.format("delta") \
    .mode("append") \
    .option("mergeSchema", "true") \
    .saveAsTable("gold.customer_churn_predictions")
5.4 Streaming Inference
Integrate ML predictions into streaming pipelines:
import mlflow
from pyspark.sql import functions as F
from pyspark.sql.types import DoubleType

# Load model as UDF
model_uri = "models:/ml_catalog.models.fraud_detector@champion"
predict_udf = mlflow.pyfunc.spark_udf(spark, model_uri, result_type="double")

# Read from streaming source
transactions_stream = spark.readStream \
    .format("delta") \
    .table("bronze.transactions")

# Apply real-time predictions
scored_stream = transactions_stream \
    .withColumn(
        "fraud_score",
        predict_udf(F.struct("amount", "merchant_category", "time_since_last_txn"))
    ) \
    .withColumn(
        "is_fraud",
        F.when(F.col("fraud_score") > 0.7, True).otherwise(False)
    )

# Write to predictions table with inference logging
scored_stream.writeStream \
    .format("delta") \
    .outputMode("append") \
    .option("checkpointLocation", "/checkpoints/fraud_predictions") \
    .trigger(processingTime="10 seconds") \
    .toTable("gold.fraud_predictions")
6. Model Monitoring
6.1 Inference Tables
Inference tables automatically capture model inputs, outputs, and metadata for analysis:
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.serving import EndpointCoreConfigInput, ServedModelInput

w = WorkspaceClient()

# Enable inference logging when creating endpoint
w.serving_endpoints.create_and_wait(
    name="customer-churn-endpoint",
    config=EndpointCoreConfigInput(
        served_models=[
            ServedModelInput(
                model_name="ml_catalog.models.customer_churn_predictor",
                model_version="5",
                workload_size="Small",
                scale_to_zero_enabled=True
            )
        ],
        auto_capture_config={
            "catalog_name": "ml_catalog",
            "schema_name": "monitoring",
            "table_name_prefix": "churn_predictor"
        }
    )
)

# Query inference logs
inference_logs = spark.sql("""
    SELECT
        request_time,
        request,
        response,
        status_code,
        execution_time_ms
    FROM ml_catalog.monitoring.churn_predictor_inference_logs
    WHERE request_time >= current_date() - INTERVAL 7 DAYS
""")
6.2 Lakehouse Monitoring
Set up drift detection and model performance monitoring:
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.catalog import MonitorInfo, MonitorTimeSeries

w = WorkspaceClient()

# Create monitor on predictions table
monitor = w.quality_monitors.create(
    table_name="ml_catalog.gold.customer_churn_predictions",
    assets_dir="/Shared/monitors/churn_predictions",
    output_schema_name="ml_catalog.monitoring",
    time_series=MonitorTimeSeries(
        timestamp_col="prediction_timestamp",
        granularities=["1 day", "1 week"]
    ),
    inference_log={
        "model_id_col": "model_version",
        "prediction_col": "churn_probability",
        "label_col": "actual_churned",  # If available
        "problem_type": "PROBLEM_TYPE_CLASSIFICATION"
    },
    slicing_exprs=[
        "customer_segment",  # Monitor by segment
        "region"             # Monitor by region
    ]
)

# View monitoring metrics
monitoring_metrics = spark.sql("""
    SELECT *
    FROM ml_catalog.monitoring.churn_predictions_profile_metrics
    WHERE window_end >= current_date() - INTERVAL 7 DAYS
""")
6.3 Custom Monitoring Dashboards
Build custom monitoring dashboards using SQL:
-- Model Performance Over Time
CREATE OR REPLACE VIEW ml_catalog.monitoring.model_performance_daily AS
SELECT
    DATE(prediction_timestamp) as prediction_date,
    model_version,
    COUNT(*) as prediction_count,
    AVG(CAST(churn_probability > 0.5 AS INT)) as positive_rate,
    -- Join with actual outcomes if available
    AVG(CASE WHEN actual_churned IS NOT NULL
        THEN CAST((churn_probability > 0.5) = actual_churned AS INT)
        END) as accuracy,
    PERCENTILE(churn_probability, 0.5) as median_score,
    STDDEV(churn_probability) as score_std
FROM ml_catalog.gold.customer_churn_predictions
GROUP BY DATE(prediction_timestamp), model_version
ORDER BY prediction_date DESC;

-- Data Drift Detection
CREATE OR REPLACE VIEW ml_catalog.monitoring.feature_drift AS
SELECT
    DATE(prediction_timestamp) as prediction_date,
    feature_name,
    AVG(feature_value) as mean_value,
    STDDEV(feature_value) as std_value,
    MIN(feature_value) as min_value,
    MAX(feature_value) as max_value,
    PERCENTILE(feature_value, 0.25) as p25,
    PERCENTILE(feature_value, 0.75) as p75
FROM ml_catalog.gold.customer_features_with_predictions
UNPIVOT (feature_value FOR feature_name IN (tenure, monthly_charges, total_charges))
GROUP BY DATE(prediction_timestamp), feature_name;
7. MLOps Best Practices
7.1 Experiment Organization
# Use consistent experiment naming conventions
EXPERIMENT_BASE = "/Shared/ml-experiments"

experiment_paths = {
    "development": f"{EXPERIMENT_BASE}/dev/{{project}}/{{model_type}}",
    "staging": f"{EXPERIMENT_BASE}/staging/{{project}}/{{model_type}}",
    "production": f"{EXPERIMENT_BASE}/prod/{{project}}/{{model_type}}"
}

# Example: /Shared/ml-experiments/dev/customer-churn/random-forest
7.2 Model Validation Pipeline
def validate_model_before_deployment(
    model_uri: str,
    validation_data: pd.DataFrame,
    baseline_metrics: dict,
    thresholds: dict
) -> bool:
    """
    Validate model performance before deployment.

    This function runs a comprehensive validation suite including:
    - Performance comparison against baseline
    - Data quality checks
    - Prediction distribution analysis

    Returns True if model passes all validation checks.
    """

    model = mlflow.pyfunc.load_model(model_uri)
    predictions = model.predict(validation_data.drop(columns=['target']))

    # Calculate metrics
    from sklearn.metrics import accuracy_score, f1_score, roc_auc_score

    current_metrics = {
        "accuracy": accuracy_score(validation_data['target'], predictions > 0.5),
        "f1_score": f1_score(validation_data['target'], predictions > 0.5),
        "roc_auc": roc_auc_score(validation_data['target'], predictions)
    }

    # Compare against baseline with thresholds
    validation_results = {}
    for metric, value in current_metrics.items():
        baseline = baseline_metrics.get(metric, 0)
        threshold = thresholds.get(metric, 0.95)  # Default: must be within 95% of baseline

        is_valid = value >= baseline * threshold
        validation_results[metric] = {
            "current": value,
            "baseline": baseline,
            "threshold": threshold,
            "passed": is_valid
        }

    # Log validation results
    with mlflow.start_run(run_name="model_validation"):
        mlflow.log_metrics(current_metrics)
        mlflow.log_dict(validation_results, "validation_results.json")

    all_passed = all(r["passed"] for r in validation_results.values())
    return all_passed
7.3 Automated Retraining Pipeline
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.jobs import Task, NotebookTask, CronSchedule

w = WorkspaceClient()

# Create automated retraining job
retraining_job = w.jobs.create(
    name="customer-churn-model-retraining",
    tasks=[
        Task(
            task_key="prepare_training_data",
            notebook_task=NotebookTask(
                notebook_path="/Repos/ml-pipelines/prepare_training_data"
            )
        ),
        Task(
            task_key="train_model",
            depends_on=[{"task_key": "prepare_training_data"}],
            notebook_task=NotebookTask(
                notebook_path="/Repos/ml-pipelines/train_model"
            )
        ),
        Task(
            task_key="validate_model",
            depends_on=[{"task_key": "train_model"}],
            notebook_task=NotebookTask(
                notebook_path="/Repos/ml-pipelines/validate_model"
            )
        ),
        Task(
            task_key="register_model",
            depends_on=[{"task_key": "validate_model"}],
            notebook_task=NotebookTask(
                notebook_path="/Repos/ml-pipelines/register_model"
            )
        )
    ],
    schedule=CronSchedule(
        quartz_cron_expression="0 0 2 ? * SUN",  # Weekly on Sunday at 2 AM
        timezone_id="America/New_York"
    )
)
8. Troubleshooting Guide
8.1 Common Issues and Solutions
	Issue
	Cause
	Solution

	Model registration fails
	Insufficient permissions
	Grant CREATE MODEL on schema

	Serving endpoint slow startup
	Large model artifact
	Enable scale-to-zero, use smaller model

	Inference table not created
	Auto-capture not enabled
	Enable in endpoint config

	Drift alerts firing
	Feature distribution changed
	Investigate upstream data changes

	Run tracking missing
	Autolog not enabled
	Enable framework-specific autolog



8.2 Performance Optimization
# Optimize batch inference performance
predictions_df = customers_df.repartition(200) \
    .withColumn(
        "churn_probability",
        predict_udf(F.struct(*feature_columns))
    )

# Cache model to avoid repeated loading
from pyspark.sql.functions import pandas_udf
import pandas as pd

@pandas_udf("double")
def cached_predict(batch_iter):
    # Model loaded once per executor
    model = mlflow.pyfunc.load_model(model_uri)
    for batch in batch_iter:
        yield pd.Series(model.predict(batch))
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